Pricing Climate Risk: Refocusing the Policy Debate

Arizona State University
April 12-13, 2013
The focus

• Pricing climate risks
 – For mitigation (emission reduction)
 – For adaptation (dealing with changes that occur)

• Are we doing enough?

• What more could be done?
 – Measuring costs
 – Implementing pricing mechanisms
The price signal

• US Government set a social cost of carbon
 – $22/ton CO2 central value
 – other values $5, $35, $65

• The central value translates into 20c/gallon of gasoline.

• Retail gas prices vary normally during the course of the year. $3.30 (January 2012) to $3.86 (September 2012).

• How visible will the price signal be?
• How large a change in emissions will it induce?
• How much adaptation will it induce?
The challenge: reconciling two perspectives

• Global perspective
 – GHGs are a global pollutant: what matters is the global aggregate of emissions. Mitigation is a global challenge
 – The climate changes globally

• Local perspective
 – Climate itself varies spatially; change in climate varies spatially
 – Most of the time, the impacts vary locally.
 – Adaptation is a local challenge
 – With some catastrophic events (thermohaline circulation changing in the Atlantic) the impacts occur on a regional or larger scale
Figure 2.22: Pattern of Projected Changes in Soil Moisture
How uneventful are future impacts?

- Potential catastrophic changes would be catastrophic.
- What about non-catastrophic changes?
 - These have been undervalued so far
 - Invisible with existing spatial/temporal scales of analysis
 - With near-term/moderate warming the economic damage is driven by extreme weather events in local areas
 - Degree days > 34C account for >80% of damage in near term & under low emission scenario, >60% of damage to US agriculture later, under high emission scenario.
Time lags and irreversibility

• Climate change over next 30-40 years is locked in with past emissions
• Emission reduction now has an effect on climate change only after 30-40 years; small effect at first, larger effect as time passes.
• Therefore, one is pricing now so as to affect impacts that occur decades from now. Does the lag make any difference to the price signal that is needed now?
 – This assumes future impacts are determined irreversibly
 – There is a shorter time lag for adaptation (though long lead time for infrastructure adaptation)
Multiple actors

• Conventional analyses assume a single, infinitely-lived global actor.
• The reality is many separate actors and many distinct generations.
• Different actors face different costs of mitigation, different potential impacts, and different opportunities and costs for adaptation.
• Does that affect how one thinks of pricing climate risk?