Consumption-Based Asset Pricing Models

Rajnish Mehra1,2,3

1Department of Economics and Finance, Arizona State University, Tempe, Arizona 85287; email: Rajnish.Mehra@asu.edu
2Luxembourg School of Finance, University of Luxembourg, L-1468 Luxembourg
3National Bureau of Economic Research, Cambridge, Massachusetts 02138

Keywords
equity premium puzzle, life cycle, borrowing constraints, retirement

Abstract
A major research initiative in finance focuses on the determinants of the cross-sectional and time series properties of asset returns. With that objective in mind, asset pricing models have been developed, starting with the capital asset pricing models of Sharpe (1964), Lintner (1965), and Mossin (1966). Consumption-based asset pricing models use marginal rates of substitution to determine the relative prices of the date, event-contingent, composite consumption good. This model class is characterized by a stochastic discount factor process that puts restrictions on the joint process of asset returns and per capita consumption. This review takes a critical look at this class of models and their inability to rationalize the statistics that have characterized US financial markets over the past century. The intuition behind the discrepancy between model prediction and empirical data is explained. Finally, the research efforts to enhance the model’s ability to replicate the empirical data are summarized.
1. INTRODUCTION

A major research initiative in finance focuses on the determinants of the cross-sectional and
time series properties of asset returns. With that objective in mind, asset pricing models
have been developed, starting with the capital asset pricing models of Sharpe (1964),
Lintner (1965), and Mossin (1966).

An asset pricing model is characterized by an operator that maps the sequence of future
random payoffs of an asset to a scalar, the current price of the asset. If the law of one
price holds in a securities market where trading occurs at discrete points in time, this
operator $C(.)$ can be represented as

$$p_t = \Psi(\{y_s\}_{s=t+1}^{\infty}) = E \left[\sum_{s=t+1}^{\infty} m_{s,t} y_s | \Phi_t \right], \tag{1}$$

where p_t is the price at time t of an asset with stochastic payoffs $\{y_s\}_{s=t+1}^{\infty}$, $\{m_{s,t}\}_{s=t+1}^{\infty}$ is a
stochastic process, Φ_t is the information available to households who trade assets at
time t, and E is the expectations operator defined over random variables that are mea-
surable with respect to the sigma algebra generated by Φ_t. If the asset payoffs end at a
finite future time T, we define the random variables $\{y_s\}_{s=T+1}^{\infty}$ to be zero. If the securities
market is arbitrage free, then the process $\{m_{s,t}\}_{s=t+1}^{\infty}$ has strictly positive support (with
probability one) and is unique if the market is complete.

No arbitrage is a necessary condition for the existence of security market equilibrium
in an economy where all agents have access to the same information set. If, however,
there is an agent in the economy with preferences that can be represented by a strictly
increasing, continuous utility function defined over security payoffs, then no arbitrage is
both necessary and sufficient for the existence of a security market equilibrium (Dybvig &
Ross 2008). In an economy characterized by such an agent and no arbitrage, all equilib-
rium asset pricing models are simply versions of Equation 1 for different stochastic pro-
cesses $\{m_{s,t}\}_{s=t+1}^{\infty}$, often referred to as stochastic discount factors or pricing kernels.

Consumption-based asset pricing models use marginal rates of substitution to deter-
mine the relative prices of the date, event-contingent, composite consumption good. This
model class is characterized by a stochastic discount factor process that puts restrictions
on the joint process of asset returns and per capita consumption. The *deus ex machina* of
consumption-based asset pricing models is that, for a given endowment process, house-
hold trading of financial assets is motivated by a desire to smooth consumption both over

1. Both the payoffs and the price are denominated in the numeraire consumption good.
2. Assets that have identical payoffs have identical prices.
3. See Ross (1976), Harrison & Kreps (1979), and Hansen & Richard (1987) for the technical restrictions on the
 payoff process for Equation 1 to hold.
4. $m_{s,t} = \prod_{k=0}^{s-t} m_{s+k+1,t+k}$, where $m_{s+k+1,t+k}$ is a random variable such that $p_{t+k} = E \left[m_{t+k+1,t+k} y_{t+k+1} | \Phi_{t+k} \right]$.
5. A securities market is arbitrage free if no security is a free lottery and any portfolio of securities with a zero payoff
 has a zero price.
6. If markets are incomplete, there will, in general, be multiple processes $\{m_{s,t}\}_{s=t+1}^{\infty}$ such that Equation 1 holds. Not
 all of them need have a strictly positive support.
7. Households maximize utility given their endowments and security prices, and supply equals demand at these
 security prices.
8. In contrast, production-based asset pricing models use the marginal rates of transformation.
time and across states at a point in time. The desirability of an asset in this model reflects its ability to smooth consumption. Hence, assets that pay off in future states when consumption levels are high—when the marginal utility of consumption is low—are less desirable than those that pay an equivalent amount in future states when consumption levels are low and additional consumption is more highly valued.9 As a consequence, the price of a claim to a unit of consumption at some future time \(t \) scales in proportion to the marginal utility of consumption at that time. Both the household’s elasticity of intertemporal substitution and risk aversion play a crucial role in this class of models.

In these models, \(m_{s,t} \) is usually expressed as a function of the marginal rate of substitution of consumption between time \(s \) and \(t \) of the agents who trade securities. For example, in a widely cited and influential paper, Lucas (1978) models \(m_{s,t} \) as \(\beta^{s-t} u'(c_s) / u'(c_t) \). Here \(c_t \) is the aggregate per capita consumption at time \(t \), \(u'(c_t) \) is the marginal utility of consumption at time \(t \), and \(\beta \) is the rate of time preference. In the case of constant relative risk aversion (CRRA) preferences, this specializes to \(\beta^{s-t} (c_s / c_t)^{-a} \), where \(a \) is the coefficient of relative risk aversion and, simultaneously, the reciprocal of the elasticity of intertemporal substitution. I make this precise in the discussion that follows in Section 2.

In this review, I develop a consumption-based asset pricing model along the lines of Lucas (1978). I next discuss the results in Mehra & Prescott (1985) that led to the equity premium puzzle. Finally, I review the literature spanning almost thirty years that attempts to resolve the puzzle.

2. A CONSUMPTION-BASED ASSET PRICING MODEL WITH STANDARD PREFERENCES

Actual asset prices are formed via the trading behavior of large numbers of heterogeneous investors as each attempts to smooth consumption, given his information on the future distribution of asset returns. Equilibria in such economies are difficult to characterize.

If financial markets are competitive and complete, and agent preferences satisfy the von Neumann-Morgenstern axioms for expected utility, there will, in general, exist, by construction, a representative (single-agent) economy with the same aggregate consumption series as the heterogeneous-agent economy and the same asset price functions. These economies are comparatively easy to analyze. In addition, if the representative agent can be constructed in a manner that is independent of the underlying heterogeneous-agent economy’s initial wealth distribution, we say that the economy displays aggregation.

Aggregation (vis-à-vis the existence of a representative agent) is a stronger, more restrictive, and more desirable property. It implies that assets may be priced in the representative-agent economy without knowledge of the wealth distribution in the underlying heterogeneous-agent counterpart. Under aggregation, results derived in the representative-agent economy are general and robust. Aggregation also permits the use of the representative agent for welfare comparisons.10

9 Consumption levels are relative to current consumption.

10 Suppose, alternatively, that aggregation fails. Then each possible initial wealth distribution, via its associated representative agent, will display its own asset pricing characteristics. No general statements may be made unless the market is complete.
In the analysis to follow I assume a market structure that enables us to use the representative-agent construct. In Section 3, I further restrict the utility function to be of the constant relative risk aversion (CRRA) class

\[u(c, x) = \frac{c^{1-\alpha}}{1-\alpha}, \quad 0 < \alpha < \infty, \quad (2) \]

where the parameter \(\alpha \) measures the curvature of the utility function. When \(\alpha = 1 \), the utility function is defined to be logarithmic, which is the limit of the above representation as \(\alpha \) approaches 1.

The CRRA preference class has three attractive features that make it the preference function of choice in much of the literature in growth and dynamic stochastic general equilibrium macroeconomic theory. It allows for aggregation and time-consistent planning, and is scale invariant. I have discussed aggregation above. I examine the other two features below.

Scale invariance means that a household is equally likely to accept a gamble if both its wealth and the gamble amount are scaled by a positive factor. Hence, although the levels of aggregate variables, such as the capital stock, stock prices, and aggregate dividends, have increased over time, the resulting equilibrium return process with this preference class is stationary. This is consistent with the statistical evidence on the time series of asset returns over the past 100 years, which confirms that asset returns are stationary. Any serious preference structure should yield equilibrium return series with this feature.

Time-consistent planning implies that optimal future-contingent portfolio decisions made at \(t = 0 \) remain the optimal decisions even as uncertainty resolves and intermediate consumption is experienced. When considering multiperiod decision problems, time consistency is a natural property to propose. In its absence, one would observe portfolio rebalancing not motivated by any event or information flow but rather simply motivated by the (unobservable) changes in the investor’s preference ordering as time passed. Asset trades would be motivated by endogenous and unobservable preference characteristics, and would thus be mysterious and unexplainable.

One disadvantage of this representation is that it links risk preferences with time preferences. With CRRA preferences, agents who like to smooth consumption across various states of nature also prefer to smooth consumption over time; that is, they dislike growth. Specifically, the coefficient of relative risk aversion is the reciprocal of the elasticity of intertemporal substitution. There is no fundamental economic reason why this must be. In Section 4, I examine the asset pricing implications of alternate preference functions where this restriction is relaxed.

I next consider the asset pricing characteristics of a frictionless economy that has a single representative stand-in household with the above characteristics. This unit orders its preferences over random consumption paths by

\[E \left\{ \sum_{t=0}^{\infty} \beta^t u(c_t) \mid \Phi_0 \right\}, \quad 0 < \beta < 1, \quad (3) \]

where \(c_t \) is the per capita consumption; \(u: \mathbb{R}_+ \to \mathbb{R} \) is a strictly increasing, continuously differentiable concave utility function; and the parameter \(\beta \) is the subjective time discount factor, which describes how impatient households are to consume. If \(\beta \) is small, people are highly impatient, with a strong preference for consumption now versus consumption
in the future. As modeled, these households live forever, which implicitly means that the utility of parents depends on the utility of their children (see Becker & Barro 1988).

We assume one productive unit, which produces output y_t in period t, which is the period dividend. There is one equity share\(^{11}\) with price p_t that is competitively traded; it is a claim to the stochastic process $\{y_s\}_{s=t+1}^{\infty}$. To connect these concepts to the data, the price p_t will correspond to the value of the market portfolio and y_t to the associated aggregate dividend process. In the background is a more elaborate macroeconomic model describing the origins of the $\{y_s\}_{s=t+1}^{\infty}$ sequence.\(^{12}\)

Consider the intertemporal choice problem of a typical investor at time t. He equates the loss in utility associated with buying one additional unit of equity to the discounted expected utility of the resulting additional consumption in the next period. To carry over one additional unit of equity p_t, units of the consumption good must be sacrificed, and the resulting loss in utility is $p_t u'(c_t)$. By selling this additional unit of equity in the next period, $p_{t+1} + y_{t+1}$, additional units of the consumption good can be consumed, and $\beta E_t\{[p_{t+1} + y_{t+1}]u'(c_{t+1})\}$ is the discounted expected value of the incremental utility in the next period. At an optimum, these quantities must be equal. This leads to the fundamental equation of consumption-based asset pricing:

$$p_t = \beta E \left\{ \frac{u'(c_{t+1})}{u'(c_t)} (p_{t+1} + y_{t+1}) \mid \Phi_t \right\}. \quad (4)$$

Equation 4 holds for any financial asset—stocks, bonds, or options.

Versions of this expression can be found in Rubinstein (1976), Lucas (1978), Breeden (1979), and Donaldson & Mehra (1984), among others. Excellent textbook treatments or surveys can be found in Campbell (2003), Cochrane (2005), Constantinides (2005), Danthine & Donaldson (2005), Duffie (2001), and LeRoy & Werner (2001).

The recursive substitution of Equation 4 yields

$$p_t = E \left\{ \sum_{s=t+1}^{\infty} \beta^{s-t} \frac{u'(c_s)}{u'(c_t)} y_s \mid \Phi_t \right\}. \quad (5)$$

This is identical to Equation 1, with a strictly positive $m_{s,t}$ equal to $\beta^{s-t} u'(c_s) / u'(c_t)$. If we interpret the random variable $m_{s,t}$ as a discount factor, we see that the price of an asset at time t is the expected discounted value of future payoffs.\(^{13}\)

To gain additional intuition, we rewrite Equation 4 in terms of asset returns as\(^{14}\)

$$E_t(R_{e,t+1}) = R_{e,t+1} + Cov_t \left\{ \frac{-U'(c_{t+1})}{E_t(U'(c_{t+1}))}, \frac{U'(c_{t+1})}{E_t(U'(c_{t+1}))} \right\}. \quad (6)$$

E_t is the expectation conditional on the information at time t,

$$R_{e,t+1} = \frac{p_{t+1} + y_{t+1}}{p_t}$$

\(^{11}\)We assume that the supply of shares is fixed.

\(^{12}\)An implicit assumption is that the equity owners have no income source other than dividends.

\(^{13}\)In a more elaborate model, such as Donaldson & Mehra (1984), the objective of the firm is to choose capital and labor to maximize p_t.

\(^{14}\)This equation also holds unconditionally, a fact that I use when quantitatively evaluating the model in Section 3.
is the gross return on equity, and

\[R_{f,t+1} = \frac{1}{q_t} \quad (7) \]

is the gross rate of return on a one-period riskless bond with price \(q_t \):

\[q_t = \beta E_t \left\{ \frac{u'(c_{t+1})}{u'(c_t)} \right\}. \quad (8) \]

Expected asset returns equal the risk-free rate plus a premium for bearing risk, which depends on the covariance of the asset returns with the marginal utility of consumption. Hence, assets that covary positively with consumption—that is, they pay off in states when consumption is high and marginal utility is low—command a high premium, given that these assets destabilize consumption.

3. A QUANTITATIVE EVALUATION OF THE MODEL

To quantitatively evaluate the consumption-based asset pricing model developed above, Mehra & Prescott (1985) computed the risk premium implied by the unconditional version of Equation 6.\(^{15}\) They used the historical average return on the S&P 500 index as a proxy for the expected return on the risky capital stock of the economy and the historical average return on Treasury bills (T-bills) as a proxy for the risk-free rate. To their surprise, they found the maximum risk premium implied by the model (0.35%), for plausible parameters, was more than an order of magnitude less than that averaged over the past 100 years (6.18%). They termed this discrepancy the equity premium puzzle. In this section, I review their findings. I begin by reviewing the historical average returns on both risky and riskless assets both in the United States and in countries that have well-developed capital markets.

Historical data provide a wealth of evidence documenting that for more than a century, US stock returns have been considerably higher than returns for T-bills. As Table 1 shows, the average annual real return (that is, the inflation-adjusted return) on the US stock market for the past 120 years has been \(-7.5\%\). In the same period, the real return on a relatively riskless security was \(1.1\%\).

The difference between these two returns, 6.4 percentage points, is the equity premium. Furthermore, this pattern of excess returns to equity holdings is not unique to US capital markets. Table 2 confirms that equity returns in other developed countries also exhibit this historical regularity when compared with the return to debt holdings. Together, the United States, the United Kingdom, Japan, Germany, and France account for more than 85% of capitalized global equity value.

The question that must be addressed is the following: Is the magnitude of the covariance between asset returns and the marginal utility of consumption in Equation 6 large enough to justify the observed 6% equity premium in US equity markets?

To address this issue, I make some additional assumptions. Although they are not necessary and were not, in fact, part of the original paper on the equity premium, I include...

\(^{15}\)In contrast to our approach, which is in the applied general equilibrium tradition, there is another tradition of testing Euler equations (such as Equation 9) and rejecting them. Hansen & Singleton (1982) and Grossman & Shiller (1981) exemplify this approach. See Cochrane (2008) for an excellent discussion.
them to facilitate exposition and because they result in closed-form solutions. [The exposition below is based on Abel’s (1988) unpublished notes and on Mehra 2003.]

These assumptions are

\[(a)\] The growth rate of consumption \(x_{t+1} = \frac{c_{t+1}}{c_t}\) is i.i.d. and log-normal.

\[(b)\] The growth rate of dividends \(z_{t+1} = \frac{y_{t+1}}{y_t}\) is i.i.d. and log-normal.

\[(c)\] \((x_t, z_t)\) are jointly log-normally distributed.

The consequences of these assumptions are that the gross return on equity \(R_{x,t}\) (defined above) is i.i.d. and that \((x_t, R_{x,t})\) are jointly log-normal.

Substituting \(U'(c_t) = c_t^{-\gamma}\) in the fundamental pricing relation

\[p_t = \beta E_t \{ (p_{t+1} + y_{t+1}) u'(c_{t+1}) / u'(c_t) \}, \]

we get

\[p_t = \beta E_t \{ (p_{t+1} + y_{t+1})x_{t+1}^{-\gamma} \}. \]

Table 1 US returns: 1889–2010

<table>
<thead>
<tr>
<th>Time period</th>
<th>% real return on a market index</th>
<th>% real return on a relatively riskless security</th>
<th>% risk premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1889–2010</td>
<td>7.5</td>
<td>1.1</td>
<td>6.4</td>
</tr>
<tr>
<td>1889–1978</td>
<td>7.0</td>
<td>0.8</td>
<td>6.2</td>
</tr>
<tr>
<td>1926–2010</td>
<td>8.0</td>
<td>0.8</td>
<td>7.2</td>
</tr>
<tr>
<td>1946–2010</td>
<td>7.5</td>
<td>0.8</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Table 2 The equity premium in other capital markets

<table>
<thead>
<tr>
<th>Country</th>
<th>Time period</th>
<th>% risk premium</th>
<th>Country</th>
<th>Time period</th>
<th>% risk premium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
<td></td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Belgium</td>
<td>1900–2010</td>
<td>5.5</td>
<td>Sweden</td>
<td>1900–2010</td>
<td>6.6</td>
</tr>
<tr>
<td>Holland</td>
<td>1900–2010</td>
<td>6.5</td>
<td>UK</td>
<td>1900–2010</td>
<td>6.0</td>
</tr>
<tr>
<td>France</td>
<td>1900–2010</td>
<td>8.7</td>
<td>Australia</td>
<td>1900–2010</td>
<td>8.3</td>
</tr>
<tr>
<td>Germany</td>
<td>1900–2010</td>
<td>9.8</td>
<td>Canada</td>
<td>1900–2010</td>
<td>5.6</td>
</tr>
<tr>
<td>Ireland</td>
<td>1900–2010</td>
<td>5.3</td>
<td>India</td>
<td>1991–2004</td>
<td>11.3</td>
</tr>
<tr>
<td>Italy</td>
<td>1900–2010</td>
<td>9.8</td>
<td>Japan</td>
<td>1900–2010</td>
<td>9.0</td>
</tr>
</tbody>
</table>

*aSource: Dimson, Marsh & Staunton (2010).
As \(p_t \) is homogeneous of degree one in \(y_t \), we can represent it as
\[
p_t = wy_t,
\]
and hence \(R_{e,t+1} \) can be expressed as
\[
R_{e,t+1} = \frac{(w+1)}{w} \cdot y_{t+1} = \frac{w+1}{w} \cdot z_{t+1}.
\] (11)

It is easily shown that
\[
w = \frac{\beta E_t \{ z_{t+1} x_{t+1}^{2 \sigma_x^2} \}}{1 - \beta E_t \{ z_{t+1} x_{t+1}^{2 \sigma_x^2} \}},
\] (12)

hence
\[
E_t \{ R_{e,t+1} \} = \frac{E_t \{ z_{t+1} \}}{\beta E_t \{ z_{t+1} x_{t+1}^{2 \sigma_x^2} \}}.
\] (13)

Analogously, the gross return on the riskless asset can be written as
\[
R_{f,t+1} = \frac{1}{\beta E_t \{ x_{t+1}^{2 \sigma_x^2} \}}.
\] (14)

Given that I have assumed the growth rate of consumption and dividends to be log-normally distributed, the unconditional expectation of Equation 13 is
\[
E \{ R_e \} = \frac{e^{\mu_x + 1/2 \sigma_x^2}}{\beta e^{-\sigma_x + 1/2 (\sigma_x^2 + 2 \sigma_z^2 - 2 \sigma_{x,z})}},
\] (15)

and
\[
\ln E \{ R_e \} = -\ln \beta + \mu_x - 1/2 \sigma_x^2 + \sigma_{x,z},
\] (16)

where \(\mu_x = E(\ln x) \), \(\sigma_x^2 = \text{Var}(\ln x) \), \(\sigma_{x,z} = \text{Cov}(\ln x, \ln z) \), and \(\ln x \) is the continuously compounded growth rate of consumption. The other terms involving \(z \) and \(R_e \) are defined analogously.

Similarly,
\[
R_f = \frac{1}{\beta e^{-\mu_x + 1/2 \sigma_x^2}},
\] (17)

and
\[
\ln R_f = -\ln \beta + \mu_x - 1/2 \sigma_x^2
\] (18)

\[
\ln E \{ R_e \} - \ln R_f = \sigma_{x,z}.
\] (19)

From Equation 11 it also follows that
\[
\ln E \{ R_e \} - \ln R_f = \sigma_{x,R_e},
\] (20)

where \(\sigma_{x,R_e} = \text{Cov}(\ln x, \ln R_e) \).

The (log) equity premium in this model is the product of the coefficient of relative risk aversion and the covariance of the (continuously compounded) growth rate of consumption.
with the (continuously compounded) return on equity or the growth rate of dividends. If we impose the equilibrium condition that $x = z$, a consequence of which is the restriction that the return on equity is perfectly correlated to the growth rate of consumption, we get

$$\ln E\{R_e\} - \ln R_f = z \sigma_x^2,$$

and the equity premium then is the product of the coefficient of relative risk aversion and the variance of the growth rate of consumption.

In Mehra & Prescott (1985) we reported the sample statistics shown in Table 3 for the US economy over the period 1889–1978. σ_x^2 implied by this data is 0.00125, so unless the coefficient of risk aversion, z, is large, a high equity premium is impossible. The growth rate of consumption just does not vary enough for the model to provide realistic results.

Our calibration of z was guided by the tenet that model parameters should meet the criteria of cross-model verification: Not only must they be consistent with the observations under consideration but they should not be grossly inconsistent with other observations in growth theory, business cycle theory, labor market behavior and so on. There is a wealth of evidence from various studies that the coefficient of risk aversion z is a small number, certainly less than 10. (Several of these studies are documented in Mehra & Prescott 1985.) We can then pose a question: If we set the risk aversion coefficient z to be 10 and β to be 0.99, what are the expected rates of return and the risk premia using the parameterization above?

Using the expressions derived earlier, we have

$$\ln R_f = -\ln \beta + z \mu_x - 1 / 2 z^2 \sigma_x^2 = 0.120$$

or

$$R_f = 1.127,$$

that is, a risk-free rate of 12.7%!

Given that

$$\ln E\{R_e\} = \ln R_f + z \sigma_x^2 = 0.132,$$

we have

$$E\{R_e\} = 1.141$$

or a return on equity of 14.1%. This implies an equity risk premium of 1.4%, far lower than the 6.18% historically observed equity premium. In this calculation we have been

<table>
<thead>
<tr>
<th>Risk-free rate R_f</th>
<th>1.008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean return on equity $E{R_e}$</td>
<td>1.0698</td>
</tr>
<tr>
<td>Mean growth rate of consumption $E{x}$</td>
<td>1.018</td>
</tr>
<tr>
<td>Standard deviation of the growth rate of consumption σ{x}</td>
<td>0.036</td>
</tr>
<tr>
<td>Mean equity premium $E{R_e} - R_f$</td>
<td>0.0618</td>
</tr>
</tbody>
</table>
liberal in choosing values for α and β. Most studies indicate a value for α that is close to 3. If we pick a lower value for β, the risk-free rate will be even higher and the premium lower. Accordingly, the 1.4% value represents the maximum equity risk premium that can be obtained in this class of models given the constraints on α and β. Given that the observed equity premium is more than 6%, it is puzzling that risk considerations alone cannot account for the equity premium within the complete markets, representative household construct.

3.1. The Risk-Free Rate Puzzle

Philippe Weil (1989) has dubbed the high risk-free rate obtained above the risk-free rate puzzle. The short-term real rate in the United States averages less than 1%, while the high value of α required to generate the observed equity premium results in an unacceptably high risk-free rate. The risk-free rate as shown in Equation 18 can be decomposed into three components:

$$\ln R_f = -\ln \beta + \alpha \mu_x - 1 / 2\alpha^2 \sigma_x^2.$$

The first term, $-\ln \beta$, is a time preference or impatience term. When $\beta < 1$ it reflects the fact that agents prefer early consumption to later consumption. Thus, in a world of perfect certainty and no growth in consumption, the unique interest rate in the economy will be $R_f = 1 / \beta$.

The second term, $\alpha \mu_x$, arises because of growth in consumption. If consumption is likely to be higher in the future, agents with concave utility will prefer to borrow against future consumption to smooth their lifetime consumption. The greater the curvature of the utility function and the larger the growth rate of consumption, the greater the desire to smooth consumption. In equilibrium, this will lead to a higher interest rate given that agents in the aggregate cannot simultaneously increase their current consumption.

The third term, $1 / 2\alpha^2 \sigma_x^2$, arises from a demand for precautionary savings. In a world of uncertainty, agents like to hedge against future unfavorable consumption realizations by building buffer stocks of the consumption good. Hence, in equilibrium the interest rate must fall to counter this enhanced demand for savings.

Figure 1 plots $\ln R_f = -\ln \beta + \alpha \mu_x - 1 / 2\alpha^2 \sigma_x^2$ calibrated to the US historical values, with $\mu_x = 0.0172$ and $\sigma_x^2 = 0.00125$ for various values of β. It shows that the precautionary savings effect is negligible for reasonable values of α ($1 < \alpha < 5$).

For $\alpha = 3$ and $\beta = 0.99$, $R_f = 1.058$, which implies a risk-free rate of 5.8%—much higher than the historical mean rate of 0.8%. The economic intuition is straightforward: With consumption growing at 1.8% a year with a standard deviation of 3.6%, agents with isoelastic preferences have a sufficiently strong desire to borrow to smooth consumption that it takes a high interest rate to induce them not to do so.

The late Fischer Black (private communication) proposed that $\alpha = 55$ would solve the puzzle. Indeed the 1889–1978 US experience reported above can be reconciled with $\alpha = 48$ and $\beta = 0.55$.

To see this, observe that since $\sigma_x^2 = \ln \left[1 + \frac{\text{var}(x)}{[E(x)]^2} \right] = 0.00125$ and

$$\mu_x = \ln E(x) - 1 / 2\sigma_x^2 = 0.0172.$$

This implies

\[\alpha = \frac{\ln E(R) - \ln R_f}{\sigma_x^2} \]

\[= 47.6 \]

Since \(\ln \beta = -\ln R_f + \alpha \mu_x - 1/2 \alpha^2 \sigma_x^2 \)

\[= -0.60, \]

this implies

\[\beta = 0.55. \]

Besides postulating an unacceptably high \(\alpha \), another problem is that this is a “knife edge” solution. No other set of parameters will work, and a small change in \(\alpha \) will lead to an unacceptable risk-free rate as shown in Figure 1. An alternate approach is to experiment with negative time preferences; however, there seems to be no empirical evidence that agents do have such preferences.\(^{16}\)

Figure 1 shows that for extremely high \(\alpha \) the precautionary savings term dominates and results in a low risk-free rate. (Kandel & Stambaugh 1991 have suggested this approach.)

\(^{16}\)In a model with growth, equilibrium can exist with \(\beta > 1 \). See Mehra (1988) for the restrictions on the parameters \(\alpha \) and \(\beta \) for equilibrium to exist.
However, then a small change in the growth rate of consumption will have a large impact on interest rates. This is inconsistent with a cross-country comparison of real risk-free rates and their observed variability. For example, throughout the 1980s, South Korea had a much higher growth rate than the United States but real rates were not appreciably higher. Nor does the risk-free rate vary considerably over time, as would be expected if α was large. In Section 4 I show how alternative preference structures can help resolve the risk-free rate puzzle.

3.2. Hansen-Jagannathan Bounds

An alternative perspective on the puzzle is provided by Hansen & Jagannathan (1991). The fundamental pricing equation can be written as

$$ E_t(R_{e,t+1}) = R_{f,t+1} + Cov_t \left(\frac{m_{t+1,t} R_{e,t+1}}{E_t(m_{t+1,t})} \right). \quad (22) $$

This expression also holds unconditionally so that

$$ E(R_{e,t+1}) = R_{f,t+1} + \sigma(m_{t+1,t}) \sigma(R_{e,t+1}) \rho_{R_{e},m} / E_t(m_{t+1,t}) \quad (23) $$

or

$$ E(R_{e,t+1}) - R_{f,t+1} / \sigma(R_{e,t+1}) = \sigma(m_{t+1,t}) \rho_{R_{e},m} / E_t((m_{t+1,t})) \quad (24) $$

and given that

$$ -1 \leq \rho_{R_{e},m} \leq 1, $$

$$ |(E(R_{e,t+1}) - R_{f,t+1}) / \sigma(R_{e,t+1})| \leq \sigma(m_{t+1,t}) / E_t(m_{t+1,t}). \quad (25) $$

This inequality is referred to as the Hansen-Jagannathan lower bound on the pricing kernel.

For the US economy, the Sharpe Ratio, $(E(R_{e,t+1}) - R_{f,t+1}) / \sigma(R_{e,t+1})$, can be calculated to be 0.37. Given that $E(m_{t+1,t})$ is the expected price of a one-period risk-free bond, its value must be close to 1. In fact, for the parameterization discussed earlier, $E(m_{t+1,t}) = 0.96$ when $\alpha = 2$. This implies that the lower bound on the standard deviation for the pricing kernel must be close to 0.3 if the Hansen-Jagannathan bound is to be satisfied. However, when this is calculated in the Mehra-Prescott framework, we obtain an estimate for $\sigma(m_{t+1,t}) = 0.002$, which is off by more than an order of magnitude.

I would like to emphasize that the equity premium puzzle is a quantitative puzzle; standard theory is consistent with our notion of risk that, on average, stocks should return more than bonds. The puzzle arises because quantitative predictions of the theory are an order of magnitude different from what has been historically documented. The puzzle cannot be dismissed lightly, given that much of our economic intuition is based on the very class of models that fall short so dramatically when confronted with financial data. It underscores the failure of paradigms central to financial and economic modeling to capture the characteristic that appears to make stocks comparatively so risky. Hence the viability of using this class of models for any quantitative assessment, say, to gauge the welfare implications of alternative stabilization policies, is thrown open to question.

For this reason, over the past 20 years or so, attempts to resolve the puzzle have become a major research impetus in both finance and economics. Several generalizations of key
features of the Mehra & Prescott (1985) model have been proposed to better reconcile observations with theory. These include alternative assumptions on preferences, modified probability distributions to admit rare but disastrous events, survival bias, incomplete markets, and market imperfections. They also include attempts at modeling limited participation of consumers in the stock market (Attanasio, Banks & Tanner 2002; Brav, Constantinides & Geczy 2002; Mankiw & Zeldes 1991; and Vissing-Jorgensen 2002), and problems of temporal aggregation (Gabaix & Laibson 2001, Heaton 1995, and Lynch 1996).

The reader is referred to the essays in the Handbook of the Equity Risk Premium (Mehra 2008) for a comprehensive review of this vast literature. (Other excellent surveys include Kocherlakota 1996, Campbell 2001, and Ludvigson 2012.) I briefly summarize some of the research efforts to resolve the puzzle in Sections 4 and 5 below. Section 4 explores explanations of the equity premium puzzle based on alternative preference specifications. Section 5, in contrast, reviews the nascent literature that takes as given the findings in Mehra & Prescott (1985) and tries to account for the equity premium by factors other than aggregate risk.

4. ALTERNATIVE PREFERENCE ORDERINGS

The analysis above shows that the CRRA preferences used in Mehra & Prescott (1985) can only be made consistent with the observed equity premium if the coefficient of relative risk aversion is implausibly large. In an effort to reconcile theory with observations, in this section I explore stochastic discount factor processes, \(\{m_{s,t}\} \), implied by preferences other than CRRA.

There is an extensive literature that explores preferences other than CRRA, defined over per capita consumption sequences. A major drawback of these alternative preference structures is that none of them permits aggregation and some are time inconsistent. In the discussion below, I discuss in detail the most widely used alternate preference classes, Generalized Expected Utility (GEU) and Habit Formation.

Although these preferences do not permit aggregation, they are time consistent.

4.1. Generalized Expected Utility

One restriction imposed by the CRRA class of preferences is that the coefficient of risk aversion is rigidly linked to the elasticity of intertemporal substitution; one is the reciprocal

17 For example, see Abel (1990); Bansal & Yaron (2004); Benartzi & Thaler (1995); Boldrin, Christiano & Fisher (2001); Campbell & Cochrane (1999); Constantinides (1990); Epstein & Zin (1991); Ferson & Constantinides (1991); and Hansen, Heaton & Li (2008).

20 For example, Bewley (1982); Brav, Constantinides & Geczy (2002); Constantinides & Duffie (1996); Heaton & Lucas (1997, 2000); Lucas (1994); Mankiw (1986); Mehra & Prescott (1985); Storesletten, Telmer & Yaron (2007); and Telmer (1993).

22 I refer the reader to Donaldson & Mehra (2008) for a detailed review.

23 See the discussion in Section 2 on the desirability of these characteristics.
of the other. What this implies is that if an individual is averse to variation of consumption across different states at a particular point of time then he will be averse to consumption variation over time. There is no a priori reason that this must be. Given that, on average, consumption is growing over time, the agents in the Mehra & Prescott (1985) setup have little incentive to save. The demand for bonds is low and as a consequence, the risk-free rate is counterfactually high. Epstein & Zin (1991) have presented a class of preferences that they term Generalized Expected Utility (GEU), which allows independent parameterization for the coefficient of risk aversion and the elasticity of intertemporal substitution. (The GEU preferences are a special case of the Kreps & Porteus 1978 family of preferences.)

In this class of preferences, utility is recursively defined by

\[U_t = \{(1 - \beta)c_t^\rho + \beta \{ E_t(\hat{U}_{t+1})\}^{\frac{1}{\rho}} \}, \tag{26} \]

where \(1 - \zeta \) is the coefficient of relative risk aversion and \(\sigma = \frac{1}{1 - \rho} \) the elasticity of intertemporal substitution. The usual isoelastic preferences follow as a special case when \(\rho = \zeta \). In the Epstein & Zin model, agents’ wealth \(W \) evolves as \(W_{t+1} = (W_t - c_t)(1 + R_{w,t+1}) \), where \(R_{w,t+1} \) is the return on all invested wealth and is potentially unobservable. To examine the asset pricing implications of this modification, I examine the stochastic discount factor implied by these preferences:\(^{24}\)

\[m_{t+1,t} = \beta^{\frac{\zeta}{\rho}} \left(\frac{c_{t+1}}{c_t} \right)^{\frac{2(\rho - 1)}{\rho}} \left(1 + R_{w,t+1} \right)^{\frac{2 - \rho}{\rho}}. \tag{27} \]

Thus the price \(p_t \) of an asset with payoff \(y_{t+1} \) at time \(t + 1 \) is

\[p_t = E_t(m_{t+1,t} y_{t+1}). \tag{28} \]

In this framework the asset is priced both by its covariance with the growth rate of consumption (the first term in Equation 27) and with the return on the wealth portfolio. This captures the pricing features of both the standard consumption CAPM and the traditional static CAPM. To see this, note that when \(\zeta = \rho \), we get the consumption CAPM and with logarithmic preferences \((\zeta / \rho = 0) \), the static CAPM.

Another feature of this class of models is that a high coefficient of risk aversion, \(1 - \zeta \), does not necessarily imply that agents will want to smooth consumption over time. However, the main difficulty in testing this alternative preference structure is that the counterpart of Equation 6 using GEU depends on variables that are unobservable, which makes calibration tricky. One needs to make specific assumptions on the consumption process to obtain first-order conditions in terms of observables. Epstein & Zin (1991) use the market portfolio as a proxy for the wealth portfolio and claim that their framework offers a solution to the equity premium puzzle. I feel that this proxy overstates the correlation between asset returns and the wealth portfolio and hence their claim. (See also the discussions in Constantinides & Ghosh 2011 and Hansen, Heaton & Li 2008 for the special case when IES = 1.)

\(^{24}\)Epstein & Zin (1991) use dynamic programming to calculate this. See their equations 8–13.
This modification has the potential to resolve the risk-free rate puzzle. I illustrate this below. Under the log-normality assumptions from Section 3, and using the market portfolio as a stand-in for the wealth portfolio, we have

\[\ln R_f = -\ln \beta + \frac{\mu_c}{\sigma} - \frac{\omega}{\rho} \frac{\sigma_c^2}{2\sigma^2} + \frac{(\omega/\rho) - 1}{2} \sigma_m^2. \]

(29)

Here \(\sigma_m^2 \) is the variance of the return on the market portfolio of all invested wealth. Given that \(1 - \omega \) need not equal \(1/\sigma \), we can have a large \(\omega \) without making \(\sigma \) small and hence obtain a reasonable risk-free rate if one is prepared to assume a large \(\sigma \). The problem with this is that there is independent evidence that the elasticity of intertemporal substitution is small (Campbell 2001); hence, this generality is not very useful when the model is accurately calibrated.

4.2. Habit Formation

Constantinides (1990) initiated a second approach to modifying preferences by incorporating Habit Formation. This formulation assumes that utility is affected not only by current consumption but also by past consumption. It captures a fundamental feature of human behavior that repeated exposure to a stimulus diminishes the response to it. The literature distinguishes between two types of habit, internal and external, and two modeling perspectives, difference and ratio. I illustrate these below. Internal Habit Formation captures the notion that utility is a decreasing function of one’s own past consumption, and marginal utility is an increasing function of one’s own past consumption. Models with external habit emphasize that the operative benchmark is not one’s own past consumption but the consumption relative to other agents in the economy.

Constantinides (1990) considers a model with internal habit formation where utility is defined over the difference between current consumption and lagged past consumption.\(^{25}\) Although the Constantinides (1990) model is in continuous time with a general lag structure, we can illustrate the intuition behind this class of models incorporating habit by considering preferences with a one-period lag:

\[U(c) = E_t \sum_{i=0}^{\infty} \beta^i \left(\frac{c_{t+i} - \lambda c_{t+i-1}}{1 - \omega} \right)^{1-\omega}, \lambda > 0. \]

(30)

If \(\lambda = 1 \) and the subsistence level is fixed, the period utility function specializes to the form \(u(c) = \frac{(c - x)^{1-\omega}}{1 - \omega} \), where \(x \) is the fixed subsistence level. (See also the discussion in Weil 1989.) The implied local coefficient of relative risk aversion is

\[\frac{-c u''}{u'} = \frac{\omega}{1 - x/c}. \]

(31)

If \(x / c = 0.8 \) then the effective risk aversion is \(5\omega! \).

This preference ordering makes the agent extremely averse to consumption risk even when the risk aversion is small. For small changes in consumption, the resulting changes

\[^{25}\text{Given that these preferences satisfy the von Neumann-Morgenstern axioms for expected utility, they allow for a representative-agent representation if the market is complete.}\]
in marginal utility can be large. Thus, although this approach cannot resolve the equity premium puzzle without invoking extreme aversion to consumption risk, it can address the risk-free rate puzzle, given that the induced aversion to consumption risk increases the demand for bonds, thereby reducing the risk-free rate. Furthermore, if the growth rate of consumption is assumed to be i.i.d., an implication of this model is that the risk-free rate will vary considerably (but counterfactually) over time. Constantinides (1990) gets around this problem since the growth rate in his model is not i.i.d.26

An alternate approach to circumvent this problem has been expounded by Campbell & Cochrane (1999). Their model incorporates the possibility of recession as a state variable so that risk aversion varies in a highly nonlinear manner.27 The risk aversion of investors rises dramatically to more than 100 when the chances of a recession become larger and thus the model can generate a high equity premium. Given that risk aversion increases precisely when consumption is low, it generates a precautionary demand for bonds that helps lower the risk-free rate. This model is consistent with both consumption and asset market data. However, it is an open question whether investors actually have the huge time-varying counter-cyclical variations in risk aversion postulated in the model.

The surplus consumption habit process in Campbell & Cochrane (1999) is highly specialized in other ways. Ljungqvist & Uhlig (2007), in particular, point out that under their specification, the representative agent would experience substantial welfare gains if 10% of his endowment were periodically destroyed. The basic intuition is straightforward: Although utility is diminished in the period in which consumption endowment is destroyed, future utility gains result since the habit is correspondingly lower. If the former loss is more than compensated by the latter gains, the overall result is welfare enhancing. While this is never the case under standard linear habit evolution, it is possible under the Campbell & Cochrane (1999) construct.28 These anomalies suggest the need for an axiomatic treatment of Habit Formation, which is presently lacking.

Another modification of the Constantinides (1990) approach is to define utility of consumption relative to average per capita consumption. This is an external habit model where preferences are defined over the ratio of consumption to lagged aggregate consumption. Abel (1990) terms his model “catching up with the Joneses.” The idea is that one’s utility depends not on the absolute level of consumption, but on how one is doing relative to others. The effect is that, once again, an individual can become extremely sensitive and averse to consumption variation. Equity may have a negative rate of return,

26In fact, several studies suggest that there is a small serial correlation in the growth rate.
27If we linearize the surplus consumption ratio in the Campbell & Cochrane (1999) model, we get the same variation in the risk-free rate as in the standard habit model. The nonlinear surplus consumption ratio is essential to reducing this variation.
28These observations are not as general as would initially appear. Consider the representative-agent utility function $\sum \beta \{ g(x_t) + v(c_t, x_t) \}$, where x_t is the aggregate consumption history, c_t is the agent’s time-t consumption, and $v(c_t, x_t)$ is increasing and concave in c_t; $g(x_t)$ and $v(c_t, x_t)$ together constitute the agent’s period utility function. With an external habit, marginal utility is given by \(\partial v(c_t, x_t) / \partial c_t \), independent of $g(x_t)$. The class of utility functions with common $v(c_t, x_t)$ but different $g(x_t)$ support the same equilibrium but may, in general, have different welfare implications. Campbell & Cochrane indeed focus on equilibrium implications driven exclusively by marginal utility $\partial v(c_t, x_t) / \partial c_t$. It is not the case that all utility functions in the class will necessarily exhibit identical welfare implications, and therefore the criticism leveled by Ljungqvist & Uhlig (2007) against Campbell & Cochrane cannot be viewed as a general statement. I thank George Constantinides for pointing this out to us.
29Hence “catching up with the Joneses” rather than “keeping up with the Joneses” (Abel 1990, footnote 1).
and this can result in personal consumption falling relative to others. Equity thus becomes an undesirable asset relative to bonds. Given that average per capita consumption is rising over time, the induced demand for bonds with this modification helps to mitigate the risk-free rate puzzle.

Abel (1990) defines utility as the ratio of consumption relative to average per capita consumption rather than the difference between the two. This is not a trivial modification (see Campbell 2001 for a detailed discussion). While difference habit models can, in principle, generate a high equity premium, ratio models generate a premium that is similar to that obtained with standard preferences.

To summarize, models with Habit Formation and relative or subsistence consumption have had success in addressing the risk-free rate puzzle but only limited success in resolving the equity premium puzzle, since in these models effective risk aversion and prudence become implausibly large.

5. NON-RISK-BASED EXPLANATIONS OF THE EQUITY PREMIUM

In this section I review the literature that takes as given the findings in Mehra & Prescott (1985) and tries to account for the equity premium by factors other than aggregate risk. Much of this literature reexamines the appropriateness of the abstractions and assumptions made in our original paper. In particular, the appropriateness of using T-bills as a proxy for the intertemporal marginal rate of substitution of consumption, ignoring the difference between borrowing and lending rates (a consequence of agent heterogeneity and costly intermediation), abstracting from life-cycle effects and borrowing constraints on the young, and the abstraction from regulations and taxes. I consider each in turn and examine the impact on the equity premium.

5.1. Using T-bill Prices as a Proxy for the Expected Intertemporal Marginal Rate of Substitution of Consumption

An assumption implicit in our paper (Mehra & Prescott 1985) is that agents use both equity and the riskless asset to smooth consumption intertemporally. This is a direct consequence of the first-order condition (below) for the representative household in our model, which implies that agents save by optimally allocating resources between equity and riskless debt:

\[
0 = E_t \left[\frac{\mu'(c_{t+1})}{\mu'(c_t)} \left(R_{e,t+1} - R_{d,t+1} \right) \right].
\]

Equation 1 is a direct consequence of Equation 4, the fundamental pricing equation.

If the results from the model are to be compared to data, it is crucial to identify the empirical counterpart of the riskless asset that is actually used by agents to smooth consumption. In our paper, we used the highly liquid T-bill rate, corrected for expected inflation, as a proxy for this asset. Given that most saving is for retirement, is it reasonable to assume that T-bills are an appropriate proxy for the riskless asset that agents use to save for retirement and smooth consumption? Do households actually hold T-bills to finance their retirement? Only if this were empirically verified would it be reasonable to equate their expected marginal rate of substitution of consumption to the rate of return on T-bills.
This question cannot be answered in the abstract, without reference to the asset holdings of households. A natural next step then is to examine the assets held by households. Table 4 details these holdings for American households. The four big asset-holding categories of households are tangible assets, pension and life insurance holdings, equity (both corporate and noncorporate), and debt assets.

In 2000, privately held government debt was valued at only 0.30 GDP, a third of which was held by foreigners. The amount of interest-bearing government debt with maturity less than a year was only 0.085 GDP, which is a small fraction of total household net worth. Virtually no T-bills are directly owned by households (see Counc. Econ. Advis. 2005, table B-89). Approximately one-third of the T-bills outstanding are held by foreign central banks and two-thirds by American financial institutions.

Although there are large amounts of debt assets held, most of these are in the form of pension fund and life insurance reserves. Some are in the form of demand deposits, for which free services are provided. Most of the government debt is held indirectly; a small fraction is held as savings bonds that people give to their grandchildren.

Thus, much of intertemporal saving is in debt assets such as annuities and mortgage debt held in retirement accounts and as pension fund reserves. Other assets, not T-bills, are typically held to finance consumption when old. Hence, T-bills and short-term debt are not reasonable empirical counterparts to the risk-free asset being priced in Equation 1, and it would be inappropriate to equate the return on these assets to the expected marginal rate of substitution for an important group of agents.

An inflation-indexed, default-free bond portfolio with a duration similar to that of a well-diversified equity portfolio would be a reasonable proxy for a risk-free asset used for consumption smoothing. (McGrattan & Prescott 2003 use long-term, high-grade municipal bonds as a proxy for the riskless security.) For most of the twentieth century, equity has had an implied duration of ~25 years, so a portfolio of TIPS of a similar duration would be a reasonable proxy.

Since TIPS have only recently (1997) been introduced in US capital markets, it is difficult to get accurate estimates of the mean return on this asset class. The average return for the 1997–2005 period is 3.7%. An alternative (though imperfect) proxy would be to use the returns on indexed mortgages guaranteed by Ginnie Mae or issued by Fannie Mae. I conjecture that if these indexed default-free securities are used as a benchmark, the equity premium would be closer to 4% than to the 6% equity premium relative to T-bills. By using the more appropriate benchmark for the riskless asset, we would have accounted for two percentage points of the equity premium.

Table 4 Household assets and liabilities as a fraction/multiple of GDP (average of 2000 and 2005)

<table>
<thead>
<tr>
<th>Assets (GDP)</th>
<th>Liabilities (GDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tangible household</td>
<td>1.65</td>
</tr>
<tr>
<td>Corporate equity</td>
<td>0.85</td>
</tr>
<tr>
<td>Noncorporate equity</td>
<td>0.5</td>
</tr>
<tr>
<td>Pension and life insurance reserves</td>
<td>1.0</td>
</tr>
<tr>
<td>Debt assets</td>
<td>0.85</td>
</tr>
<tr>
<td>Total</td>
<td>4.85</td>
</tr>
<tr>
<td>Total</td>
<td>4.85</td>
</tr>
</tbody>
</table>

Annu. Rev. Fin. Econ. 2012.4:385-409. Downloaded from www.annualreviews.org by 212.76.252.243 on 11/05/12. For personal use only.
5.2. Abstracting from the Effects of Government Regulations

McGrattan & Prescott (2003) argue that the estimated average return on debt assets in the United States (including T-bills) over the 1926–2000 period is biased downward because of various regulations (W and X) that helped the Treasury keep nominal rates below 2.5% during the 1941–1954 period. Table 5 shows that the return on debt securities during the 1941–1954 period was considerably lower than their long-term average value. This serves as a reminder that governments can pursue regulatory policies that result in negative interest rates over an extended period of time. These rates have little to do with an agent’s marginal rate of substitution that would be inferred were there no regulations. Such regulatory periods should be excluded in estimating the long-term average rates on debt securities.

The third column in Table 5 shows how the conventionally used numbers (in column two) change when the 1941–1954 period is excluded. The estimated average rates increase by ~1% for all asset classes.

Mehra & Prescott (2008b) point out that in the case of T-bills a further adjustment needs to be made to the returns in the 1930s. During that period, in some states, T-bills were exempt from personal property taxes whereas cash was not. This created an excess demand for the T-bills, and they sold at a premium. Again, these rates on return have little to do with the marginal rate of substitution of consumption over time. The effect of these adjustments is to further reduce the magnitude of the equity premium relative to T-bills.

To summarize, using the return on a risk-free asset that is used for saving as a proxy for the intertemporal marginal rate of substitution of consumption (instead of a T-bill return) can significantly reduce the equity premium. Adjusting debt returns for government regulations further reduces the historical equity premium over the 1926–2000 period by 1% irrespective of the debt asset used as a benchmark.

The adjustments suggested in Sections 5.1 and 5.2 suggest that 3% of the equity premium reported in Mehra & Prescott (1985) can be accounted for by factors other than aggregate risk.

5.3. Ignoring the Difference Between Borrowing and Lending Rates: A Consequence of Agent Heterogeneity and Costly Intermediation

A major disadvantage of the homogeneous household construct is that it precludes the modeling of borrowing and lending among agents. In equilibrium, the shadow price of

Table 5 US inflation-adjusted average return on debt

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US Treasury bills</td>
<td>0.8%</td>
<td>1.8%</td>
<td>−3.6%</td>
</tr>
<tr>
<td>Intermediate-term</td>
<td>2.4%</td>
<td>3.6%</td>
<td>−2.7%</td>
</tr>
<tr>
<td>government bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term</td>
<td>2.7%</td>
<td>3.8%</td>
<td>−1.9%</td>
</tr>
<tr>
<td>government bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term</td>
<td>3.0%</td>
<td>4.1%</td>
<td>−1.9%</td>
</tr>
<tr>
<td>corporate bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aSource: Ibbotson Assoc. (2001)
consumption at date $t + 1$ in terms of consumption at date t is such that the amount of borrowing and lending is zero. However, there is a large amount of costly intermediated borrowing and lending between households and, as a consequence, borrowing rates exceed lending rates. When borrowing and lending rates differ, the following question arises: Should the equity premium be measured relative to the riskless borrowing rate or the riskless lending rate?

To address this, we (Mehra, Piguillem & Prescott 2011) construct a model that incorporates agent heterogeneity and costly financial intermediation. The resources used in intermediation (3.4% of GNP) and the amount intermediated (1.7 GNP) imply that the average household borrowing rate is at least 2% higher than the average household lending rate. Relative to the level of the observed average rates of return on debt and equity securities, this spread is far from being insignificant and cannot be ignored when addressing the equity premium.

In our model, a subset of households both borrows and holds equity. As a consequence, a no-arbitrage condition is that the return on equity and the borrowing rate are equal (5%). The return on government debt, the household lending rate, is 3%. If we use the conventional definition of the equity premium—the return on a broad equity index less the return on government debt—we would erroneously conclude that in our model the equity premium was 2%. The difference in the government borrowing rate and the return on equity is not an equity premium; it arises because of the wedge between borrowing and lending rates. Analogously, if borrowing and lending rates for equity investors differ, and they do in the US economy, the equity premium should be measured relative to the investor borrowing rate rather than the investor lending rate (the government’s borrowing rate). Measuring the premium relative to the government’s borrowing rate artificially increases the premium for bearing aggregate risk by the difference between the investor’s borrowing and lending rates. (For a detailed exposition of this and related issues, the reader is referred to Mehra & Prescott 2008a.) If such a correction were made and the equity premium was measured relative to the investor’s borrowing rate, it would be further reduced by two percentage points.

5.4. Abstracting from Life-Cycle Effects and Borrowing Constraints on the Young

In Constantinides, Donaldson & Mehra (2002) we examine the impact of life-cycle effects such as variable labor income and borrowing constraints on the equity premium. We illustrate these ideas, in an overlapping-generations (OLG) exchange economy in which consumers live for three periods. In the first period, a period of human capital acquisition, the consumer receives a relatively low endowment income. In the second period, the consumer is employed and receives wage income subject to large uncertainty. In the third period, the consumer retires and consumes the assets accumulated in the second period.

The implications of a borrowing constraint are explored in two versions of the economy. In the borrowing-constrained version, the young are prohibited from borrowing and from selling equity short. The borrowing-unconstrained economy differs from the

30There is no aggregate uncertainty in our model.
borrowing-constrained one only in that the borrowing constraint and the short-sale constraint are absent.

The attractiveness of equity as an asset depends on the correlation between consumption and equity income. Given that the marginal utility of consumption varies inversely with consumption, equity will command a higher price (and consequently a lower rate of return), if it pays off in states when consumption is high, and vice versa.\(^3\)

A key insight of our paper (Constantinides, Donaldson & Mehra 2002) is that as the correlation of equity income with consumption changes over the life cycle of an individual, so does the attractiveness of equity as an asset. Consumption can be decomposed into the sum of wages and equity income. A young person looking forward at the start of his life has uncertain future wage and equity income; furthermore, the correlation of equity income with consumption will not be particularly high, as long as stock and wage income are not highly correlated. This is empirically the case, as documented by Davis & Willen (2000). Equity will thus be a hedge against fluctuations in wages and a desirable asset to hold as far as the young are concerned.

The same asset (equity) has a very different characteristic for the middle-aged. Their wage uncertainty has largely been resolved. Their future retirement wage income is either zero or deterministic, and the innovations (fluctuations) in their consumption occur from fluctuations in equity income. At this stage of the life cycle, equity income is highly correlated with consumption. Consumption is high when equity income is high, and equity is no longer a hedge against fluctuations in consumption; hence, for this group, equity requires a higher rate of return.

The characteristics of equity as an asset therefore change, depending on who the predominant holder of the equity is. Life-cycle considerations thus become crucial for asset pricing. If equity is a desirable asset for the marginal investor in the economy, then the observed equity premium will be low, relative to an economy where the marginal investor finds it unattractive to hold equity. The *deus ex machina* is the stage in the life cycle of the marginal investor.

We argue that the young, who should be holding equity in an economy without frictions, are effectively shut out of this market because of borrowing constraints. The young are characterized by low wages; ideally, they would like to smooth lifetime consumption by borrowing against future wage income (consuming a part of the loan and investing the rest in higher return equity). However, they are prevented from doing so because human capital alone does not collateralize major loans in modern economies for reasons of moral hazard and adverse selection.

Thus, in the presence of borrowing constraints, equity is exclusively priced by the middle-aged investors, since the young are effectively excluded from the equity markets. We thus observe a high equity premium. If the borrowing constraint is relaxed, the young will borrow to purchase equity, thereby raising the bond yield. The increase in the bond yield induces the middle-aged to shift their portfolio holdings from equity to bonds. The increase in demand for equity by the young and the decrease in the demand for equity by the middle-aged work in opposite directions. On balance, the effect is to increase both the equity and the bond return while simultaneously shrinking the equity premium.

31This is precisely the reason why high-beta stocks in the simple CAPM framework have a high rate of return. In that model, the return on the market is a proxy for consumption. High-beta stocks pay off when the market return is high, i.e., when marginal utility is low, hence their price is (relatively) low and their rate of return high.
The results in our paper suggest that, depending on the parameterization, between two and four percentage points of the observed equity premium can be accounted for by incorporating life-cycle effects and borrowing constraints. I have argued that using an appropriate benchmark for the risk-free rate, accounting for the difference between borrowing and lending rates, and incorporating life-cycle features can account for the equity premium. That this can be accomplished without resorting to risk supports the conclusion of our 1985 paper that the premium for bearing systematic risk is small.

6. CONCLUDING COMMENTS
In this review, I have provided a glimpse of the vast literature on the consumption-based asset pricing model and the equity premium puzzle. As a result of these research efforts, we have a deeper understanding of the role and importance of the abstractions that contribute to the puzzle. Although no single explanation has fully resolved the anomaly, considerable progress has been made and the equity premium is a lesser puzzle today than it was 25 years ago.

DISCLOSURE STATEMENT
The author is not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS
This review is based on my essays in Mehra (2008); my essays in Mehra (2011); and joint work with George Constantinides, John Donaldson, and Edward Prescott. I thank them for providing invaluable feedback and comments. The usual caveat applies.

LITERATURE CITED
Abel AB. 1990. Asset prices under habit formation and catching up with the Joneses. Am. Econ. Rev. 80:38–42
Barro R. 2006. Rare disasters and asset markets in the twentieth century. Q. J. Econ. 12(3):823–66

Rubinstein M. 1976. The valuation of uncertain income streams and the pricing of options. Bell J. Econ. 7:407–25

EconScholar App
Available for iOS and Android

Economics scholars can now access highly cited, mobile-optimized review articles from a variety of mobile devices. The EconScholar app, from Annual Reviews, allows immediate access to full-text review articles for users with personal or institutional subscriptions to the Annual Review of Economics, the Annual Review of Financial Economics, and the Annual Review of Resource Economics.

Also, non-subscribers and new users can access selected complimentary articles and all abstracts, and discover firsthand the breadth and quality of these review articles.

The app allows users to:

• read and cache full-text articles on a mobile device
• view high-resolution images and video
• bookmark articles (saving full-text indefinitely)
• search journal content
• read and share content through social media tools

Subscribers can either enter their personal login information or connect via institutional access to view full-text content.

To download the free EconScholar app, please visit the Apple AppStore or GooglePlay store.

For more information visit: www.annualreviews.org/page/econscholaroverview
Contents

Implications of the Dodd-Frank Act
Viral V. Acharya and Matthew Richardson 1

Valuation of Government Policies and Projects
Deborah Lucas .. 39

The Impacts of Automation and High Frequency Trading
on Market Quality
Robert Litzenberger, Jeff Castura, and Richard Gorelick 59

Shadow Banking Regulation
Tobias Adrian and Adam B. Ashcraft 99

Narrow Banking
George Pennacchi .. 141

Federal Reserve Liquidity Provision during the Financial Crisis
of 2007-2009
Michael J. Fleming ... 161

Efficient Markets and the Law: A Predictable Past
and an Uncertain Future
Henry T.C. Hu .. 179

Corporate Governance of Financial Institutions
Hamid Mehran and Lindsay Mollineaux 215

Corporate Finance and Financial Institutions
Mark J. Flannery .. 233

A Survey of Systemic Risk Analytics
Dimitrios Bisias, Mark Flood, Andrew W. Lo,
and Stavros Valavanis .. 255

Sovereign and Financial-Sector Risk: Measurement and Interactions
Dale F. Gray and Samuel W. Malone 297
Regime Changes and Financial Markets
 Andrew Ang and Allan Timmermann .. 313
The Real Effects of Financial Markets
 Philip Bond, Alex Edmans, and Itay Goldstein 339
Economic Activity of Firms and Asset Prices
 Leonid Kogan and Dimitris Papanikolaou 361
Consumption-Based Asset Pricing Models
 Rajnish Mehra .. 385
Taxes and Investment Choice
 Robert M. Dammon and Chester S. Spatt 411
Closed-End Funds: A Survey
 Martin Cherkes ... 431
Commodity Investing
 K. Geert Rouwenhorst and Ke Tang 447
Market Microstructure and the Profitability of Currency Trading
 Carol Osler ... 469

Errata

An online log of corrections to Annual Review of Financial Economics
articles may be found at http://financial.annualreviews.org